711 research outputs found

    A Simple Baseline for Travel Time Estimation using Large-Scale Trip Data

    Full text link
    The increased availability of large-scale trajectory data around the world provides rich information for the study of urban dynamics. For example, New York City Taxi Limousine Commission regularly releases source-destination information about trips in the taxis they regulate. Taxi data provide information about traffic patterns, and thus enable the study of urban flow -- what will traffic between two locations look like at a certain date and time in the future? Existing big data methods try to outdo each other in terms of complexity and algorithmic sophistication. In the spirit of "big data beats algorithms", we present a very simple baseline which outperforms state-of-the-art approaches, including Bing Maps and Baidu Maps (whose APIs permit large scale experimentation). Such a travel time estimation baseline has several important uses, such as navigation (fast travel time estimates can serve as approximate heuristics for A search variants for path finding) and trip planning (which uses operating hours for popular destinations along with travel time estimates to create an itinerary).Comment: 12 page

    The extended Ville's inequality for nonintegrable nonnegative supermartingales

    Full text link
    Following initial work by Robbins, we rigorously present an extended theory of nonnegative supermartingales, requiring neither integrability nor finiteness. In particular, we derive a key maximal inequality foreshadowed by Robbins, which we call the extended Ville's inequality, that strengthens the classical Ville's inequality (for integrable nonnegative supermartingales), and also applies to our nonintegrable setting. We derive an extension of the method of mixtures, which applies to σ\sigma-finite mixtures of our extended nonnegative supermartingales. We present some implications of our theory for sequential statistics, such as the use of improper mixtures (priors) in deriving nonparametric confidence sequences and (extended) e-processes

    Huber-Robust Confidence Sequences

    Full text link
    Confidence sequences are confidence intervals that can be sequentially tracked, and are valid at arbitrary data-dependent stopping times. This paper presents confidence sequences for a univariate mean of an unknown distribution with a known upper bound on the p-th central moment (p > 1), but allowing for (at most) {\epsilon} fraction of arbitrary distribution corruption, as in Huber's contamination model. We do this by designing new robust exponential supermartingales, and show that the resulting confidence sequences attain the optimal width achieved in the nonsequential setting. Perhaps surprisingly, the constant margin between our sequential result and the lower bound is smaller than even fixed-time robust confidence intervals based on the trimmed mean, for example. Since confidence sequences are a common tool used within A/B/n testing and bandits, these results open the door to sequential experimentation that is robust to outliers and adversarial corruptions.Comment: 26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023

    Comparative Study on Static Term Structure of Interest Rates

    Get PDF
    The term structure of interest rates has been a hot topic in the financial sector. With the accelerating process of interest rate liberalization, to seek a representative benchmark interest rate of the market is basis for the fixed income products pricing. This paper using Nelson-Siegel-Svensson model and polynomial spline model fitting analysis is carried out on bond transaction data of Shanghai stock exchange in China, through analysis and comparison of the two models, to choose the appropriate method to fit the term structure of interest rates

    Time-Uniform Confidence Spheres for Means of Random Vectors

    Full text link
    We derive and study time-uniform confidence spheres - termed confidence sphere sequences (CSSs) - which contain the mean of random vectors with high probability simultaneously across all sample sizes. Inspired by the original work of Catoni and Giulini, we unify and extend their analysis to cover both the sequential setting and to handle a variety of distributional assumptions. More concretely, our results include an empirical-Bernstein CSS for bounded random vectors (resulting in a novel empirical-Bernstein confidence interval), a CSS for sub-ψ\psi random vectors, and a CSS for heavy-tailed random vectors based on a sequentially valid Catoni-Giulini estimator. Finally, we provide a version of our empirical-Bernstein CSS that is robust to contamination by Huber noise.Comment: 36 pages, 3 figure

    Capacitor Condition Monitoring for Modular Multilevel Converter Based on Charging Transient Voltage Analysis

    Get PDF
    • …
    corecore